For numbers between 1 and 50, we use the binomial expansion formula:(B+x)3=B3+3B2x+3Bx2+x3(B + x)^3 = B^3 + 3B^2x + 3Bx^2 + x^3(B+x)3=B3+3B2x+3Bx2+x3
where:
✔️ Answer: 23³ = 12,167
✔️ Answer: 47³ = 103,823
For numbers above 50, we use the formula:(100−x)3=1003−3(1002)x+3(100)x2−x3(100 – x)^3 = 100^3 – 3(100^2)x + 3(100)x^2 – x^3(100−x)3=1003−3(1002)x+3(100)x2−x3
✔️ Answer: 97³ = 912,673
✔️ Answer: 88³ = 683,472
N | N³ | N | N³ |
---|---|---|---|
1³ | 1 | 11³ | 1331 |
2³ | 8 | 12³ | 1728 |
3³ | 27 | 13³ | 2197 |
4³ | 64 | 14³ | 2744 |
5³ | 125 | 15³ | 3375 |
6³ | 216 | 16³ | 4096 |
7³ | 343 | 17³ | 4913 |
8³ | 512 | 18³ | 5832 |
9³ | 729 | 19³ | 6859 |
10³ | 1000 | 20³ | 8000 |
For smaller numbers (1 to 9), use this pattern:
By using these shortcut tricks, you can calculate any cube between 1 and 100 within 10 seconds! 🔥 Whether you’re preparing for competitive exams, interviews, or quick mental math challenges, this method will save time and effort.